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Abstract

Let p(M) be the dimension of the vector space of parallel spinors on a closed spin manifoldM. We
prove that every finite groupG is the holonomy group of a closed flat spin manifoldM(G) such that
p(M(G)) > 0. If the holonomy group Hol(M) of M is cyclic, then we give an explicit formula for
p(M) another than that given in [R.J. Miatello, R.A. Podesta, The spectrum of twisted Dirac operators
on compact flat manifolds, Trans. Am. Math. Soc., in press]. We answer the question whenp(M) > 0
if Hol(M) is a cyclic group of prime order or dimM ≤ 4.
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1. Introduction

In this paper, we consider the question of the existence of parallel spinors on a closed flat
manifoldM. Parallel spinors onM coincide with harmonic ones. Our first result is a variant
of the Auslander–Kuranishi theorem showing that every finite group is the holonomy group
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of a closed flat spin manifold admitting nontrivial parallel spinors. The other ones deal with
the dimensions of vector spaces of parallel spinors on flat manifolds with cyclic holonomy
groups and flat 4-manifolds. Our results and Theorem 2.6 in[11] are complementary to that
of [12] and[15], where the question of the existence of parallel spinors was considered for
irreducible nonflat Riemannian manifolds. An analogous problem for harmonic spinors has
been investigated in many papers (see e.g.[2,8–10]and the references given there).

To explain the formulations of the results we need some definitions. Ann-dimensional
closed flat manifoldM is the orbit space of the Euclidean spaceRn by a properly dis-
continuous and free action of a discrete subgroup� of the isometry groupI(Rn) of Rn.
The holonomy homomorphismϕ : � → O(n) carriesγ ∈ � onto the linear part ofγ. The
manifoldM is orientable if and only if imϕ ⊂ SO(n). The compactness ofM implies that
kerϕ ∼= Zn. The finite groupϕ(�) (denoted by Hol(M)) is the holonomy group ofM (cf.
[4, p. 51], [18, ch. 3, Lemma 3.4.4]). If M is a spin manifold, then every spin structures on
M can be identified with a lift̂ϕ : � → Spin(n) of ϕ : � → SO(n). Let p(M, s) denote the
dimension of the vector space of parallel spinors onM with a spin structures. Our first two
results are the following.

Theorem 1.1. For every finite group G there are a closed flat manifold M(G) and a spin
structure s on M(G) such that Hol(M(G)) ∼= G and p(M(G), s) > 0.

Theorem 1.2. Let M be a closed flat 4-manifold. The following conditions are equivalent:

(a) there is a spin structure s on M such that p(M, s) > 0,
(b) M is a torus.

To formulate the next results we need more definitions. We say that a spin-structure
ϕ̂ is admissible if ϕ̂ = ιa ◦ ϕ for some homomorphismιa : ϕ(�) → Spin(n). It is known
that only admissible spin structures admit parallel spinors (cf.Lemma 2.1below). Now
assume thatM = Rn/� is a closed, orientable, flat manifold with holonomy groupϕ(�)
isomorphic toZr. Fix a generatorA of ϕ(�) and an orthonormal basise1, . . . , en in Rn

such thatA|Span[e2j−1,e2j ] , j = 1, . . . , l, is a rotation bŷβj andA(ej) = ej for j > 2l. Let

λ : Spin(n) → SO(n) be the projection (cf. Section2) andk = [n/2]. Takeβj = 1
2β̂j and

Cj ∈ {0,1, . . . , r − 1} such thatβj = Cj
π
r
. Settinĝβj = Cj = 0 forj > 2l,we can assume

thatl = k. Consider

ρj = cosβj + e2j−1e2j sin βj

andα = ∏k
j=1 ρj. It is easily seen thatα ∈ Spin(n) and λ(α) = A. If α̂ ∈ {−α, α} and

α̂r = 1, then the formulaιa(A) = α̂ defines an admissible spin structure onM that will be
also denoted bŷα. LetµI = ∑k

j=1Cj,

α+ =
{
α if µI is even

−α if µI is odd,
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andα− = −α+. For everyε = (ε1, . . . , εk) ∈ {−1,1}k consider

µε =
k∑
j=1

Cjεj.

A Riemannian manifold with the holonomy groupG will be called ahol(G)-manifold.

Theorem 1.3. Let M be a closed hol(Zr)-manifold and let n, k, µε be as above. Assume
that r is odd. Then α+ is the unique admissible spin structure on M,

p(M,α+) = #{ε ∈ {−1,1}k : µε ≡ 0 mod (2r)} if µI is even,

and

p(M,α+) = #{ε ∈ {−1,1}k : µε ≡ rmod (2r)} if µI is odd.

Theorem 1.4. Let M be a closed hol(Zr)-manifold and let n, k, µε be as above. Assume
that r is even.

(a) If µI is odd, then p(M, s) = 0 for every flat spin structure s on M.
(b) If µI is even, then α and −α determine two admissible spin structures on M,

p(M,α) = #{ε ∈ {−1,1}k : µε ≡ 0 mod (2r)},

and

p(M,−α) = #{ε ∈ {−1,1}k : µε ≡ rmod (2r)}.

Corollary 1.5. If s is a spin structure on a closed hol(Zr)-manifold M, then p(M, s) is
even.

A general formula forp(M, ϕ̂) can be found in[11]. It shows that

p(M, ϕ̂) =
∑
g∈ϕ̂(�)

χ
ϕ̂
(g),

whereχ
ϕ̂

is the character of the representation ofϕ̂(�) determined by the action of̂ϕ(�) on
the irreducible CliffC(n)-module�n. Our description ofp(M, ϕ̂) is more convenient for us.
If r is a prime number, thenTheorems 1.3 and 1.4together with the Diedrichsen–Reiner
description ofZ[Zr]-lattices imply the following.

Theorem 1.6. Let p be an odd prime number, letM = Rn/� be a closed hol(Zp)-manifold,
and let l(M) = 1

p−1[n− dim(Rn)ϕ(�)]. The following conditions are equivalent:
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(a) p(M,α+) > 0,
(b) p > 5 or l(M) ≥ 2.

Theorem 1.7. Let M = Rn/� be a closed hol(Z2)-manifold and let l(M) = 1
2[n−

dim(Rn)ϕ(�)]. The following conditions are equivalent:

(a) p(M,α) > 0,
(b) p(M,−α) > 0,
(c) l(M) is even.

If the orderr of Hol(M) is not prime, then the question concerning the existence of parallel
spinors is more difficult, because the integral representations ofZr are more complicated.
The motivations to study parallel spinors on flat manifolds with cyclic holonomy groups
are the following. The case of cyclic holonomy is one of the simplest and one of the most
important cases. It is the starting point of the investigation of parallel spinors on closed flat
manifolds (cf. Section3).

2. Holonomy groups and parallel spinors

The aim of this section is to proveTheorem 1.1. First we state some properties of
parallel spinors on flat manifolds. For the details we refer to[8] and [13]. Let Cliff(n)
be the Clifford algebra determined by the scalar product inRn, CliffC(n) = Cliff( n) ⊗ C,
and let∗ be the anti-involution on Cliff(n) given on the generatorsei1, . . . , eim by the
formula (ei1, . . . , eim )∗ = eim, . . . , ei1. The group Spin(n) consists of the products of even
number of copies of the elements of the unit sphere inRn and the standard covering map
λ : Spin(n) → SO(n) carriesy ∈ Spin(n) ontoλ(y) : Rn � x → yxy∗ ∈ Rn. The kernel of
λ is equal to{−1,1}. The irreducible complex CliffC(n)-module�n can be described as
follows (cf. [10, Section 1.3]). Consider

g1 =
[
i 0

0 −i

]
, g2 =

[
0 i

i 0

]
, T =

[
0 −i
i 0

]
.

Let k = [
n/2

]
, �n = C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

k times

, andα(j) =
{

1 if j is odd

2 if j is even
. Take an element

u = u1 ⊗ · · · ⊗ uk of �n and an orthonormal basise1, . . . , en in Rn. Forj ≤ 2k set

eju = (I ⊗ · · · ⊗ I ⊗ gα(j) ⊗ T ⊗ · · · ⊗ T︸ ︷︷ ︸[
j−1

2

]
times

)(u).

If n = 2k + 1, then

enu = i(T ⊗ · · · ⊗ T )u.
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The vector space of parallel spinors onM can be identified with�im ϕ̂
n (see e.g.[15, Section

4]). It is easy to check the following.

Lemma 2.1. If p(M) > 0, then −1 /∈ im ϕ̂.

Lemma 2.1is a particular case of a more general observation ([14, Lemma 3.1], [15]).
Before provingTheorem 1.1, we describe a useful construction. It has been used earlier in
[6,7] and in the other papers. LetM0 be a closed flat manifold of dimensionn0. Consider
the Bieberbach exact sequence

1 → 0 → �0
ϕ0→G0 → 1,

whereϕ0 is the holonomy homomorphism ofM0 and0 = kerϕ0 ∼= Zn0. This sequence
is described by the action ofG0 on0 and the cohomology classν0 ∈ H2(G0,0) corre-
sponding to our extension. Fixr ∈ N. Take

r = 0 × · · · ×0︸ ︷︷ ︸
r times

with the diagonal action ofG0, ν = ν0 ⊕ · · · ⊕ ν0 ∈ H2(G0,r) and the arising extension

1 → r → �r → G0 → 1.

It is easy to verify that�r is the deck group of a closed flat manifolddr(M0) and there is a
homomorphism

P : �r � γr → γ ∈ �0,

inducing the identity map onG0, such that (P|r )(δ1, . . . , δr) = δ1. The holonomy homo-
morphismϕr of dr(M0) is given by the formula

ϕr : � � γr → ϕ0(γ) ⊕ · · · ⊕ ϕ0(γ) ∈ SO(n0) × · · · × SO(n0) ⊂ SO(rn0).

Proof of Theorem 1.1. By the Auslander–Kuranishi theorem (see[1], [4, ch.3, Theorem
1.1], [18, ch. 3, Theorem 3.4.8]), there is a closed flat manifoldV whose holonomy group
is isomorphic toG. It is clear thatV1 = d2(V ) is a closed orientable flat manifold. By[7,
Theorem 1], V2 = d2(V1) has a spin structurêϕV2. Let r = 2|G|, M(G) = dr(V2), n2 =
dimV2, andn = dimM(G). The homomorphism

ϕ̂ : �r � γr → (ϕ̂V2(γ), . . . , ϕ̂V2(γ)) ∈ Spin(n2) × · · · × Spin(n2) ⊂ Spin(n)

determines a spin structures onM(G). From the above description of�n and�n2 it follows
that

�n = �n2 ⊗ · · · ⊗�n2︸ ︷︷ ︸
r times
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and the action of im̂ϕ on�n is given by the formula

ϕ̂(γr)(u1 ⊗ · · · ⊗ ur) = ϕ̂V2(γ)u1 ⊗ · · · ⊗ ϕ̂V2(γ)ur.

For everyv ∈ �n2 consider(v) = v⊗ · · · ⊗ v ∈ �n. Let q = dim�n2 and

 = {(v) ∈ �n : v ∈ �n2}.

Giveng ∈ im ϕ̂, take a basisv1, . . . , vq of �n2 such thatgvj = zjvj for j = 1, . . . , q, and
for somezj ∈ C. The equalitygr = 1 implies thatzrj = 1 and consequently

g(vj) = zrj(vj) = (vj).

Since(v1), . . . , (vq) is a basis of,g =  andim ϕ̂ = . This finishes the proof of
Theorem 1.1. �

3. Parallel spinors on 4-manifolds

Proof of Theorem 1.2. (a) ⇒ (b). Assume thatM = R4/� is a closed flat 4-manifold
admitting nontrivial parallel spinors. LetA be an element ofϕ(�) of prime orderp,MA =
R

4/ϕ−1(〈A〉), and letsA be the spin structure onMA induced by the spin structures
on M. Then Hol(MA) = 〈A〉 and p(MA, sA) ≥ p(M, s) > 0. Fix γ ∈ ϕ−1(A). The deck
transformationγp is a translation by somev ∈ R4 − {0}. AsAv = v, there is an orthonormal
basise1, e2, e3, e4 such thatA(e3) = e3, A(e4) = e4 andA acts as a rotation by an angleψ
on Span[e1, e2]. The lift ϕ̂(γ) of ϕ(γ) is equal to±(cos ψ2 + e1e2 sin ψ

2 ).
Since dimM = 4,p = 2 orp = 3 (see e.g.[5, p. 563]). If p = 2, thenϕ̂(γ)2 = −1 and

thusp(MA, sA) = 0. If p = 3,ψ = 2πl
3 for somel ∈ {1,2} and the action of̂ϕ(γ) on�4 is

given by the formula

ϕ̂(γ)(u1 ⊗ u2) = ±
(

cos
πl

3
+ e1e2 sin

πl

3

)
(u1) ⊗ u2.

Since

cos
πl

3
+ g1g2 sin

πl

3
=

cos
πl

3
− sin

πl

3

sin
πl

3
cos

πl

3

 ,

�
im ϕ̂
4 = {0}. This shows thatM has trivial holonomy so thatM is a torus. The implication

(b) ⇒ (a) is obvious. �
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Example 3.1. Theorem 1.2is false for flat manifolds of dimension greater than 4. To
see this considern ≥ 5,B = A3 ⊕ A3 ⊕ idR, (see Section5 for the definition ofA3), the
translationτ by (0,0,0,0, 1

3), g̃ = τ ◦ B, and the isometryg of T 5 induced by ˜g. As g
acts freely onT 5, M = (T 5/〈g〉) × T n−5 is a closed flatn-manifold. Takeα+ ∈ Spin(n)
determined byA. By Theorem 1.6, p(M,α+) > 0. Another family of counterexamples form
hol(Zp)-manifolds forp ≥ 7 (cf.Theorem 1.6). They exist in dimensions not smaller thanp
([5, p. 563]).

Remark 3.2.

(a) It is known that every closed flat manifoldM, admitting nontrivial parallel spinors, such
that dimM ≤ 3, is a torus (see e.g.[15, Theorem 5.1]). This result follows easily from
our argument.

(b) The problem which higher-dimensional flat manifolds admit nontrivial parallel spinors
is much more difficult than the problem considered here. The numberνf (n) of n-
dimensional closed flat manifolds increases rapidly withn. It is known thatνf (2) = 2,
νf (3) = 10 ([18, Section 3.5]), νf (4) = 74, νf (5) = 1060 ([5]), andνf (6) = 38746
([5]). For more information about affine equivalence classes of closed flat manifolds up
to dimension 6 we refer to Carat home page athttp://wwwb.math.rwth-aachen.de/carat/.

4. Parallel spinors on flat manifolds with cyclic holonomy groups

Throughout this sectionM = Rn/� is a closed, orientable, flat manifold with holonomy
groupϕ(�) isomorphic toZr. Define an endomorphismρ of C2 by the formula

ρ(u) = cosβ u+ sin β g1g2 u.

For j ∈ Z the matrix ofρj is equal to

cos(βj) I + sin(βj)

[
0 −1

1 0

]
=

[
cos(βj) − sin(βj)

sin(βj) cos(βj)

]
.

In the proofs ofTheorems 1.3 and 1.4we use the following lemma (compare[16, Lemma
7]).

Lemma 4.1. Let w+1 = (1,−i), w−1 = (1, i), ε = (ε1, . . . , εk) ∈ {−1,1}k, and vε =
wε1 ⊗ · · · ⊗ wεk . Take β = π

r
and µε as above. Let u = u1 ⊗ · · · ⊗ uk ∈ �n. Then

(a) αu = ρC1(u1) ⊗ · · · ⊗ ρCk (uk),
(b) ρ(w±1) = e±iβw±1,
(c) αvε = eiβµεvε and {vε : ε ∈ {−1,1}k} is a basis of �n.

http://wwwb.math.rwth-aachen.de/carat/


M. Sadowski / Journal of Geometry and Physics 56 (2006) 864–874 871

Proof.

(a) SinceT 2 = I,

e2j−1e2j(u1 ⊗ · · · ⊗ uj ⊗ · · · ⊗ uk) = u1 ⊗ · · · ⊗ (g1g2)(uj) ⊗ · · · ⊗ uk

and

((cosψ1 + e2j−1e2j sin ψ1)(cosψ2 + e2j−1e2j sin ψ2))

(u1 ⊗ · · · ⊗ uj ⊗ · · · ⊗ uk) = u1 ⊗ · · · ⊗ (cos(ψ1 + ψ2)

+ e2j−1e2j sin(ψ1 + ψ2))(uj) ⊗ · · · ⊗ uk. (1)

The equalityβj = Cjβ implies that

α(u1 ⊗ · · · ⊗ uk) = (ρ1, . . . , ρk)(u1 ⊗ · · · ⊗ uk) = ρC1(u1) ⊗ · · · ⊗ ρCk (uk).

(b) A direct calculation yields

ρ(w+1) = ρ(1,−i) = eiβw+1

and

ρ(w−1) = e−iβw−1.

(c) By (b),ρ(wεj ) = eiβεjwεj . Hence

α(vε) = ρC1(wε1) ⊗ · · · ⊗ ρCk (wεk ) = eiβµεvε.

Since #{vε : ε ∈ {−1,1}k} = 2k = dim�n and the vectorsvε are linearly independent, they
form a basis of�n. This finishes the proof ofLemma 4.1. �
Proof of Theorem 1.3. We have

αrvε = e
iπ

∑k

j=1
Cj
vε =

{
vε if µI is even

−vε if µI is odd

Sincer is odd, (−α)r = −αr so thatαr+ = 1 andαr− = −1. In particular, there is exactly
one admissible flat spin structure onM, namely the spin structure determined byα+.

If µI is even, thenα+ = α and

α+vε = vε ⇔ eiβµεvε = vε ⇔ µε ≡ 0 mod (2r).

If µI is odd, thenα+ = −α and

α+vε = vε ⇔ −eiβµεvε = vε ⇔ µε ≡ rmod (2r).

This completes the proof ofTheorem 1.3. �
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Proof of Theorem 1.4. We have

(±α)rvε = αrvε = eiµIπvε = (−1)µI vε.

If µI is odd, then (±α)r = −1 so that there are no admissible spin structures onM. If µI is
even, then (±α)r = 1,

αvε = vε ⇔ µε ≡ 0 mod (2r), and (−α)vε = vε ⇔ µε ≡ rmod (2r).

The proof ofTheorem 1.4is complete. �

Proof of Corollary 1.5. Let D± = {ε = (ε1, . . . , εk) ∈ {−1,1}k : ε1 = ±1} and l ∈
{0,1}. The mapf (ε) = −ε is a bijection carryingD+ ontoD− and{−1,1}k = D+ ∪D−.
Using the relation

µε ≡ lrmod (2r) ⇔ µf (ε) ≡ lrmod (2r)

we conclude the proof ofCorollary 1.5. �

5. Parallel spinors on hol(Zp)-manifolds

Let p be a prime number. The aim of this section is to proveTheorems 1.6 and 1.7. Fix
a generatorA of ϕ(�). The group ringZ[Zp] consists of formal sums

∑p−1
j=0 njg

j such that

g is a generator ofZp andnj ∈ Z. The element� = ∑p−1
j=0 g

j generates an idealI(�) of
Z[Zp] andZ[ζp] = Z[Zp]/I(�). The isomorphism

Âp : Rp � (x1, x2, . . . , xp) → (x2, . . . , xp, x1) ∈ Rp

acts trivially onW = {(x1, . . . , x1) : x1 ∈ R} so thatÂp inducesAp : Rp/W → R
p/W .

We can identifyϕ(�) with Zp, Rp/W with Rp−1, andÂp with Ap ⊕ idR.

Lemma 5.1.

(a) A is conjugate to the direct sum of l(M) copies of Ap and idRn−(p−1)l(M) .
(b) If p > 2, thenAp is the direct sum of rotations by 2π

p
j, j = 1, . . . , p−1

2 .

Proof.

(a) SinceA has integral coefficients, it induces the structure of aZ[Zp]-moduleξA in Zn.
It is clear that theZ[Zp]-modules corresponding tôAp andAp areZ[Zp] andZ[ζp].
Let Z(p) denote thep-localization ofZ. It is known that every nontrivial irreducible
Z[Zp]-module after ap-localization is isomorphic toZ[Zp] ⊗ Z(p) or Z[ζp] ⊗ Z(p)

(see e.g.[5, p. 553]). Moreover,Z[Zp]Zp ∼= Z andZ[ζp]Zp ∼= {0}. Thus there is an
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integerl such thatξA ⊗ R is isomorphic to the direct sum ofl copies ofZ[ζp] ⊗ R and
(ξA ⊗ R)Zp ∼= Rn−(p−1)l. The last claim implies thatl = l(M).

(b) Applying the Laplace expansion with respect to the last column of the matrix ofÂp −
z id it is easy to see that the characteristic polynomial ofÂp is equal to (−1)pzp +
(−1)p+1 and the eigenvalues of̂Ap are equal toe

2πj
p for j = 0, . . . , p− 1. �

Let l = l(M), k = [n/2], k(2) = 1, andk(p) = p−1
2 for p > 2. Every elementε of

{−1,1}k can be written as

ε = (ε(1), . . . , ε(l), ε̂)

for someε(i) = (εi,1, . . . , εi,k(p)) ∈ {−1,1}k(p), i = 1, . . . , l, ε̂ ∈ {−1,1}k−k(p)l. Let

µε(i) =
k(p)∑
j=1

jεi,j and µ(p) = k(p)(k(p) + 1)

2
.

By Lemma 5.1,

µε =
l∑
i=1

µε(i) and µI = lµ(p).

We use the following observation proved in[16, Section 4].

Lemma 5.2. If p > 5, then there is ε∗ ∈ {−1,1}k(p) such that

µε∗ =
{

0 if µ(p) is even

p if µ(p) is odd
.

Proof of Theorem 1.6. First consider the casep > 5. Letε∗, ε̂ be as above and let

ε = (ε∗, . . . , ε∗︸ ︷︷ ︸
l copies

, ε̂).

Thenµε = lµε∗ ≡ 0 mod (2p), if µI = lµ(p) is even, andµε = lp ≡ pmod (2p), if µI is
odd. Assume thatp = 3 and l ≥ 2. Thenl = 2l1 or l = 2l2 + 3. Takeδ = (1,−1), ε =
(δ, . . . , δ︸ ︷︷ ︸
l1 copies

, ε̂) in the first case andε′ = (1,1,1, δ, . . . , δ︸ ︷︷ ︸
l2 copies

, ε̂) in the second. It is obvious that

µε = 0 andµε′ = 3.
Consider the next casep = 5 and l ≥ 2. As above,l = 2l1 or l = 2l2 + 3. Let δ ∈

{−1,1}2 andω = (1,1,1,1,1,−1). Takeε = (δ,−δ, . . . , δ,−δ, ε̂) in the first case and
ε′ = (ω, δ,−δ, . . . , δ,−δ, ε̂) in the second. Thenµε = 0 andµε′ = µω = 5.
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It is easily seen that the equationµε ≡ pmod (2p) has no solutions forp ∈ {3,5} and
l = 1. This finishes the proof ofTheorem 1.6. �
Proof of Theorem 1.7. A generatorA of ϕ(�) is the direct sum of sayl copies of the
rotation byπ. Since (Rn)A ∼= Rn−2l, l = l(M). By Theorem 1.4, p(M,α) = p(M,−α) = 0
for l odd. Assuming thatl = 2l1 consider

ε = (1,−1, . . . ,1,−1, ε̂) and ε′ = (1,1,1,−1, . . . ,1,−1, ε̂).

Thenµε = 0 andµε′ = 2. The first equality implies thatp(M,α) > 0 and the second that
p(M,−α) > 0. This completes the proof ofTheorem 1.7. �

Remark 5.3. The arguments given in the proofs ofTheorems 1.6 and 1.7can be used to

estimatep(M, s) from below. For simplicity consider only the casep > 7. Letc(p) =
[
k(p)

4

]
.

The sequenceδ4 considered in the proof of Theorem 1 in[14] can be replaced by−δ4 so
that the number ofε∗ from Lemma 5.2is greater or equal 2c(p)+1 (cf. [16, Section 4]) and
thus

p(M,α+) ≥ 2(c(p)+1)l(M)+k−k(p)l(M).
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